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1. Goals for this Module

In this module, we will

1. Develop a general strategy, called the �keep it alive sequential ap-
proach,�that can be used for a wide variety of problems

2. Work several examples of the use of the �keep it alive�strategy.

(a) Smoking tables

(b) Poker hands

(c) Epidemiology

(d) Rolling the dice

(e) Finding matching numbers in a phone book

(f) Finding matching birthdays in a group of people.

3. De�ne and discuss �counting rules�

(a) The general rule for the number of sequences

(b) Permutations

(c) Permutations with selection

(d) Combinations

4. Revisit some earlier problems using counting rules

http://www.statpower.net
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2. The Keep It Alive Sequential Strategy

In the last class, we learned an important rule for computing probability
of a sequence

Corollary 2.1 The probability of the sequence of events A1A2A3 � � �AN
is the product of the probabilities of events at each point in the sequence
conditional on everything that happened previously, i.e.,

Pr(A1A2A3 � � �AN) = Pr(A1) Pr(A2jA1)
�Pr(A3jA1A2)
�Pr(A4jA1A2A3)
� � � �Pr(AN jA1A2 � � �AN�1)

You will see many applications for this rule if you recognize its full
potential. The key is to realize that the events Ai at each point in the
sequence can be de�ned as any outcome that �keeps alive�the event of in-
terest, with the corresponding conditional probability de�ned as the prob-
ability that the event of interest will be kept alive. A few examples will
su¢ ce to demonstrate this.

http://www.statpower.net
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Example 2.1 (Estimating the Need for Smoking Tables) Several
years ago, a movement started in the city in which I was living to convert
all restaurants to non-smoking environments. As a �rst step, all estab-
lishments were required to have designated �Non-Smoking� areas. A key
question for restaurant owners was precisely what proportion of their tables
to allocate to the Smoking and Non-Smoking sections. I couldn�t help but
notice that, in the restaurants I frequented, it seemed like there were very
few Non-Smoking tables. Since only about 1/3 of the general population of
adults smoked at the time, this seemed really unfair. But was it? What is
the probability that a group of 4 people arriving at a restaurant will require
a smoking table?

http://www.statpower.net
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Solution 2.1 Of course, we cannot answer this question de�nitively with-
out a great deal of research. Like many �real world� problems, there are
many complexities to deal with. However, we can make some simplify-
ing assumptions and create a simple probability model that will provide us
with some important insights into this question. Suppose, for the sake of
simplicity, we assume the following: (a) People arrive at the restaurant in
groups of 4; (b) People arrive independently with respect to smoking behav-
ior, i.e., smokers do not �cluster in groups.� (This assumption is almost
certainly false to a degree.), (c) If at least one person in a group of 4 is
a smoker, then that group will require a Smoking table. De�ne S as the
event that a randomly selected person is a smoker. Under those assump-
tions, and if Pr(S) = 1=3, Pr(S) = 2=3, we can compute the probability
of a group requiring a smoking table using the keep it alive strategy, and
by recalling the 2nd Theorem of probability, i.e., that Pr(A) = 1� Pr(A).
We will compute the probability of A, then subtract it from 1 to obtain
the answer. The only way a Non-Smoking table can be selected is if all 4
people who form the group are non-smokers. The probability of this is

Pr(No smoker in the group) = Pr(S \ S \ S \ S)
= Pr(S) Pr(S) Pr(S) Pr(S)

= (2=3)(2=3)(2=3)(2=3)

=
16

81

http://www.statpower.net
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Notice that the second line of the above formula utilized the result on inde-
pendence, i.e., it assumed that the probability that one person in a group is
a smoker is una¤ected by whether or not the other individuals are smokers.
Under this simplifying assumption, we �nd that

Pr(Smoking Table Needed) = 1� Pr(Smoking Table Not Needed)
= 1� 16=81

=
65

81
= 0:8025

Under these assumptions, we see that the need for smoking tables far
outstrips the proportion of smokers in the population! We may wish to
investigate precisely how robust this conclusion is to variations on these
assumptions.

http://www.statpower.net
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Example 2.2 (The Probability of a Flush in Poker) A �ush in 5
card stud poker is obtained if all 5 cards are of the same suit, i.e., either
5 spades, 5 hearts, 5 diamonds, or 5 clubs. What is the probability of
obtaining a �ush?

Solution 2.2 The key to solving this problem is to ask, for each of the 5
cards, what is the probability of obtaining a card that will �keep alive�the
possibility of obtaining a �ush. When the �rst card is drawn, any card will
leave alive the possibility of a �ush. However, once the �rst card is drawn,
the suit (spade, heart, diamond, club) of the �ush (if one is to occur) has
been determined. After the �rst card has been drawn, 51 cards remain in
the deck, and 12 of them are in the suit of the �rst card. So the probability
that the second card will leave alive the possibility of a �ush is 12/51, or
4/17. If the second card leaves alive the possibility of a �ush, only 11 cards
of the correct suit remain in the deck out of the 50 cards that have not been
drawn. So the probability that the third card will leave alive the possibility
of a �ush is 11/50. Continuing in this vein, we can see that the probability
of a �ush is

Pr(Flush) = (1)(12=51)(11=50)(10=49)(9=48) =
33

16 660
= :001981
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Example 2.3 (The Probability of Disease Transmission) In epi-
demiology, we can consider two rather di¤erent but related probabilities,
(a) the probability of disease transmission in a single isolated encounter,
and (b) the probability of disease transmission occurring after several en-
counters. Suppose, for example, that a fatal disease is transmitted via
handshake, but that the general probability of catching the disease if you
shake hands with an infected person is only .10, and only 1 person in 10 in
the population is infected. If we assume that propensity to shake hands is
unrelated to presence or absence of the disease, this means that the proba-
bility of catching the disease after 1 handshake is only 1 in 100, i.e., .01.
Suppose you are a politician who is planning to shake 10 hands randomly
this afternoon. What is the probability that you will contract the disease?

Solution 2.3 The probability of catching the disease is much more di¢ cult
to compute directly than is the probability of not catching the disease. Not
catching the disease involves not catching it on any of the handshakes. Let
T represent the event that the disease is transmitted in a single handshake.
Pr(T ) = :01, and Pr(T ) = :99. In order not to catch the disease, you must
have the event T occur on all 100 handshakes. We have

Pr(No Transmission) =

�
99

100

�10
=
90 438 207 500 880 449 001

100 000 000 000 000 000 000

and

Pr(Transmission) = 1�
�
99

100

�10
= :09562
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Example 2.4 (Rolling a 6-Straight in Dice) Suppose you were to roll
6 fair dice (or one fair die six consecutive times). What is the probability
that you would obtain a 6-straight, i.e., have the numbers 1,2,3,4,5,6 come
up equally often?

Solution 2.4 The �keep it alive� sequential strategy works beautifully on
problems like this. We simply ask what is the probability that the 6-straight
will be �kept alive� on each die throw. What is the probability that the
�rst throw will leave �alive� the possibility of a 6-straight? Of course it
is 1, since whatever number is rolled will not rule out the possibility that
subsequent throws of the die will produce other numbers. But once the �rst
die is thrown, what is the probability that the second die will leave alive
a 6-straight. Once the �rst die is thrown, there are 5 remaining numbers
(out of 6). So the probability that the second throw will leave a 6-straight
alive is 5=6: Once the second die is thrown, there are only 4 numbers left
that will leave alive a 6-straight. So the probability that the third throw
will leave alive a 6-straight, given that the �rst two throws did, is 4=6.
Continuing in this manner, we see that the probability of a 6-straight is

Pr(6�straight) = (1)(
5

6
)(
4

6
)(
3

6
)(
2

6
)(
1

6
)

=
5

324
= :01543
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Example 2.5 (The Phone Book Problem) Suppose you open the
phone book, and, without looking, select a page �at random.�Then, without
looking, you point at a line in the phone book, circle that phone number,
and the next 12, for a total of 13 phone numbers. (Do you feel lucky?)
What is the probability that there are, within that group of 13 numbers, at
least two numbers with the same last two digits? (If there is, you win!!)
The following 4 phone numbers are an example of a match.

682-8787
547-9002
778-7891
666-5487

Solution 2.5 We need to make a simplifying assumption, i.e., that all
numbers from 0 to 9 are equally likely to occur in the last a phone number,
and that they occur at random. We then make use of the �keep it alive�
strategy and the Second Theorem of probability. There are 100 possible
pairs of digits in the last 2 positions in a phone number. Of course the �rst
number leaves alive the possibility of No Match. Once the �rst number has
occurred, there are 99 possible digit pairs (out of 100) remaining that will
not match the �rst. Once the �rst two numbers have occurred, there are
98 possible numbers remaining. We continue this way for 13 positions in

http://www.statpower.net
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the sequence. So the probability we seek is

Pr(Match) = 1� Pr(No Match)

= 1�
�
100

100

��
99

100

��
98

100

��
97

100

�
� � �
�
88

100

�
= 1�

100Y
i=88

�
i

100

�
=

2720825388401678993

4882812500000000000
= :557255

which is slightly more than 5=9. Your odds of winning this game are about
5 to 4, which, in Las Vegas, would be like a license to print money.

Example 2.6 (The Birthday Problem) Suppose there are 23 people
in a room, and they have assembled essentially at random with respect to
birthdays. What is the probability that at least two people in the room have
the same birthday?

Solution 2.6 C.P.

http://www.statpower.net
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3. Counting Rules and Combinatorics

The sequence (�keep it alive approach�) works very well for a huge number
of di¢ cult problems. However, certain problems cannot be solved easily
using this approach, but can be solved using the general rule for equally
likely elementary events:

Pr(A) =
NA
N


where NA is the number of elementary events in A, the event of interest,
and N
 is the number of elementary events in the sample space 
. The
sample space is huge in most problems, and we cannot solve the problem
by inspection. Rather, must construct, by counting rules, the values for
the numerator and denominator of the above formula.
Combinatorics rules are di¢ cult to master for many students, because

they require a mode of thought that is foreign to us when we �rst encounter
it. It may help to keep reminding yourself that counting rules are not
(directly) about probability � they are about counting the number of
ways you can produce arrangements that �t a particular description.
In the following sections, we examine 4 of the key rules of combinatorics.

These rules can be used to solve (literally) thousands of complex and
challenging problems.

http://www.statpower.net
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3.1. The general rule for the number of sequences

The �rst rule of combinatorics is used to derive the other three rules. It is
deceptively simple. Consider a sequence of events Ei; i = 1; 2; : : : k. Let
Ni; i = 1; 2; : : : k be the number of alternatives at the ith point in the
sequence, conditional on everything that has gone before. Then the total
number of possible sequences is

kY
i=1

Ni

Example 3.1 (Scheduling Courses) You are trying to construct a sched-
ule. You have 3 courses you could take at 8:30, and 2 courses you could
take at 9:30. How many di¤erent possible schedules are there?

Solution 3.1 The answer is the product of 3 and 2, or 6. It is easy to see
how this rule is derived, if you simply produce a diagram of the possibilities.
Suppose that the available courses at 8:30 are labeled A, B, and C, and the
available courses at 9:30 are D and E. You obtain 6 possible pathways, as
shown on the following page..

http://www.statpower.net
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8:30                      9:30
                               D
A
                               E
                               D
B

         E
                               D
C
                               E

Figure 1: Diagramming the number of possible sequences.

http://www.statpower.net
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3.2. Permutations

The number of permutations, or distinct orderings, of N objects is N !, the
product of the integers counting down from N to 1, or

N ! = N(N � 1)(N � 2):::(2)(1)

Example 3.2 Compute 3!, 9!, and 20!

Solution 3.2

3! = (3)(2)(1) = 6

9! = (9)(8)(7)(6)(5)(4)(3)(2)(1) = 362880

20! = 2432 902 008 176 640 000

Clearly, factorials get very large very quickly as a function of N .

Example 3.3 There are 7 students in a seminar. Each student must give
a presentation. How many distinctly di¤erent orderings of the 7 presenta-
tions are there?

Solution 3.3 The answer is 7! = 5040:

The derivation of the permutation rule is a straightforward consequence
of the general rule for the number of sequences. Suppose you have just 3

http://www.statpower.net
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items, A, B, C. Howmany distinctly di¤erent orderings can you construct?
You have 3 possibilities at the �rst position. Once the �rst position is
determined, you have only 2 possibilities for the second position. Once
the �rst 2 positions are determined, there remains only one possibility
for the third position. So there are (3)(2)(1) = 6 distinct orderings of 3
objects. The situation is diagrammed below

3.3. Permutations with selection

In some cases, we wish to select a group from a larger group, and then
order them. How many ways can we select r objects from N objects and
then order them? This is called �the number of permutations of N objects
taken r at a time,�and is denoted

NPr = (N)(N � 1)(N � 2) � � � (N � r + 1)| {z }
r values

NPr is the product of the r integers counting down from N .

Lemma 3.1 Remark 3.1 Some books give the formula for NPr as

NPr =
N !

(N � r)!

http://www.statpower.net
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                               B C
A

                          C B

                               A C
B
                               C A

                               A B
C
                               B A

Figure 2: Diagramming the permutations of 3 objects.
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This formula is not very e¢ cient. To see why, consider the expression for
6P4 using the two alternate versions of the formula.

6P4 = (6)(5)(4)(3)

=
6!

(6� 4)! =
6!

2!
=
(6)(5)(4)(3)(2)(1)

(2)(1)

Example 3.4 For example, suppose there are 6 people trying to get into
my o¢ ce, but I have only 3 chairs. How many ways can I select 3 people
out of 6, and then order them into the 3 chairs?

Solution 3.4 The solution is

6P3 = (6)(5)(4) = 120

3.4. Combinations

In many situations, you are only interested in the number of ways you can
select r objects from N objects, without respect to order. For example,
suppose I had 3 tickets to a concert, and there were 6 students who wanted
the tickets. How many di¤erent groups could I select to get the tickets?
In this case, order doesn�t matter. For example, if we label the 6 people
A, B,C,D,E,F, the groups ABC and CBA are equivalent, since, for this
analysis, the only thing that matters is who gets tickets! The number of

http://www.statpower.net
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combinations (di¤erent sets) of N objects taken r at a time is obtained by
computing by the number of permutations, then dividing by the number
of orders of the r objects, thereby �factoring out the order.�
Several di¤erent notations are used for �N choose r;�the number of

combinations of N objects taken r at a time. Two common notations are

NCr

and �
N

r

�
Remark 3.2 The formula for the number of combinations is often given
as �

N

r

�
=

N !

(N � r)!r! (1)

This is often woefully ine¢ cient. If we recall that this formula is equivalent
to �

N

r

�
=

NPr
r!

we realize that a more e¢ cient way to compute combinations is the follow-
ing:

�
N
r

�
is the ratio of the product of the r integers counting down from

N divided by the product of the r integers counting up from 1.

http://www.statpower.net
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Remark 3.3 The computation of combinations can be made even more
e¢ cient by remembering the following rule�

N

r

�
=

�
N

N � r

�
So when confronted with a combination problem, ask which number is
smaller, r or N � r. Call this value k. Then compute the answer as�
N
k

�
:

Example 3.5 Compute
�
200
198

�
Solution 3.5 Using the method described in the remark above, we realize
that �

200

198

�
=

�
200

2

�
=
(200)(199)

(2)(1)
= 19900

Remark 3.4 If we had used Equation 1, and processed the formula lit-
erally, the computation would have been horribly ine¢ cient, as we would
have had to compute

200!

198!2!

http://www.statpower.net
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Example 3.6 (The Probability of a Flush, Revisited) Compute the
probability of a �ush in 5 card stud poker, using the combinatorial approach.

Solution 3.6 The combinatorial approach to solving this problem is com-
pletely di¤erent from the �keep it alive�sequential approach. N
 is simply
the number of distinctly di¤erent hands of 5 cards that can be drawn from
a deck of 52. This is 52C5. NA is the number of di¤erent ways you can
construct a �ush. Consider only �ushes in spades. There are 13 spades,
so there are 13C5 di¤erent spade �ushes. There are equally many diamond,
heart, and club �ushes. So the probability of a �ush must be

4
�
13
5

��
52
5

�
After some reduction, you can see that it is indeed equal to our previous
answer.

4
�
13
5

��
52
5

� = 4(13)(12)(11)(10)(9)
(5)(4)(3)(2)(1)

(52)(51)(50)(49)(48)
(5)(4)(3)(2)(1)

=
(52)(12)(11)(10)(9)

(52)(51)(50)(49)(48)
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Example 3.7 How many sets, including the null set, can be formed from
N objects?

Solution 3.7 This is a classic example of a problem that can be solved
with di¤erent approaches that yield formulas that are equivalent, but look
completely di¤erent. Consider the simple case of N = 3. Call the 3 ele-
ments A, B, and C. We can ask �How many 0 element sets are there?�
The answer, of course, is 1, the Null Set. Next, we might ask how many 1
element sets there are, and the answer is clearly 3. Each of these amounts
cam be computed as a combination, i.e., 3C0 = 1, 3C1 = 3. So the to-
tal number of sets that can be formed from 3 elements is the sum of the
number of 0 element,1 element, 2 element, and 3 element sets that can be
selected from 3 objects. This is�

3

0

�
+

�
3

1

�
+

�
3

2

�
+

�
3

3

�
= 1 + 3 + 3 + 1 = 8

So, more generally, the number of sets that can be formed from an 
 with
N elements is

NX
i=0

�
N

i

�
However, there is a much simpler answer, obtained in a completely di¤er-
ent way. Simply realize that for each set formed from the N objects, there
is a unique N digit binary code. Each element in 
 is coded either 0 or 1
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depending on whether it is in the set. For example, the following table lists
all the sets that can be made from the objects A, B, C, and the associated
binary code. Can you see from the table below why the answer must be 2N?

A B C Set

0 0 0 ?
1 0 0 A
0 1 0 B
0 0 1 C
1 1 0 A,B
1 0 1 A,C
0 1 1 B,C
1 1 1 A,B,C
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